Химический состав спор бактерий

Строение и особенности химического состава бактериальной споры

Споровые покровы в основном состоят из белков и в небольшом количестве из липидов и гликолипидов. Белки покровов обладают высокой устойчивостью к неблагоприятным условиям и обеспечивают спорам защиту от действия литических ферментов, других повреждающих факторов, а также предохраняют спору от преждевременного прорастания. Оказалось, что споры мутантов, лишенные покровов, прорастают сразу же после выхода из материнской клетки, даже если условия для последующего роста неблагоприятны. Кортекс построен в основном из молекул особого типа пептидогликана.

Основное функциональное отличие спор у бактерий и грибов: у бактерий споры обеспечивают переживание в неблагоприятных условиях окружающей среды, у грибов образование спор – способ размножения.


Рис.1. Схема строения зрелой бактериальной эндоспоры

Споры бывают круглыми, овальными или эллиптическими; некоторые снабжены «рёбрами жёсткости», усиливающими устойчивость к механическим воздействиям. При микроскопическом исследовании споры выделяются высоким коэффициентом светопреломления, аналогичный таковому у обезвоженного белка.

В зрелой споре различимы: центральный, плохо окрашиваемый участок (спороплазма), двухслойная ЦПМ и оболочка споры.

Спороплазма (протопласт споры) включает цитоплазму, бактериальную хромосому, системы белкового синтеза и некоторые другие (например, анаэробного энергообразования).

Оболочка споры двухслойная: пространство между слоями заполняют гликопептидные полимеры, сходные с пептидогликанами, образующие сетчатую структуру (кортекс), проявляющую высокую чувствительность к лизоциму. Внутренний слой (стенка споры) образован пептидогликанами, аналогичными таковым вегетирующей клетки. Внешний слой (собственно оболочка) образуют кератиноподобные белковые структуры с низкой проницаемостью.

Экзоспориум. У некоторых бактерий материнская клетка образует экзоспориум – двух-трёхслойное желатинообразное покрытие образованное липопротеинами и углеводами и во многом аналогичное капсуле бактерий. При созревании споры экзоспориум может сохраняться в виде пустого и отстающего от споры «мешка».

У бактерий спора, покрытая особо прочной оболочкой, — средство для переживания не6лагоприятных условий. Грибы образуют споры для размножения.

Грибы размножаются половым и бесполым (вегетативным) способом. При вегетативном размножении образуются специализированные репродуктивные структуры – споры – конидии. Они могут располагаться в специализированных вместилищах – спорангиях (эндоспоры) или отшнуровываться от плодоносящих гиф (экзоспоры). Реже наблюдают образование спор внутри клеток (оидии), являющихся сегментами гиф. Дрожжевые клетки размножаются почкованием, мицелий не образуют. Половое размножение включает взаимодействие специализированных клеток, имеющих существенные различия в морфологии у различных грибов и часто используемых как дифференциально-диагностический признак.

Для большинства видов грибов, имеющих медицинское значение, характерно наличие конидий (или экзоспор), являющихся формами неполового размножения. Их классификация во многом основывается на морфологических формах конидий. Их наиболее частые формы- бластопоры, хламидоспоры, артроспоры, конидиоспоры.

Бластоспоры – простые структуры, которые образуются в результате почкования, с последующим отделением почки от родительской клетки, например у дрожжевых грибов.

Хламидоспоры образуются в результате увеличения гифальных клеток с образованием толстой оболочки, защищающей споры от неблагоприятных условий окружающей среды.

Артроспоры – споры, образующиеся путем фрагментации гиф на отдельные клетки. Они встречаются у дрожжеподобных грибов, возбудителя кокцидиоидоза, тканевых форм дерматофитов в волосе, кожных чешуйках и в ногтях.

Конидиоспоры – зрелые наружные споры, возникающие на дифференцированных конидиофорах (конидионосцах), отличающихся от других нитей мицелия по форме и размерам (у аспергилл, пеницилл) или располагающиеся по бокам и на концах любой ветви мицелия, прикрепляясь к ней непосредственно или тонкой ножкой.

К эндоспорам совершенных грибов относятся спорангиоспоры мукоровых грибов, развивающихся в специальных органах (спорангиях), располагающихся на вершине спорангиеносца. Споры освобождаются при разрыве стенки спорангия.

Эндоспоры обнаруживают также у тканевых форм возбудителей кокцидиоидоза. Они развиваются в круглых образованиях — сферулах, при разрыве стенки зрелой сферулы попадают во внешнюю среду.

Спорообразование – способ сохранения определенных видов бактерий в неблагоприятных условиях среды. Эндоспоры образуются в цитоплазме, представляют собой клетки с низкой метаболической активностью и высокой устойчивостью (резистентностью) к высушиванию, действию химических факторов, высокой температуры и других неблагоприятных факторов окружающей среды. При световой микроскопии часто используют метод выявления спор по Ожешко. Высокая резистентность связана с большим содержанием кальциевой соли дипиколиновой кислоты в оболочке спор. Расположение и размеры спор у различных микроорганизмов отличается, что имеет дифференциально-диагностическое (таксономическое) значение. Основные фазы «жизненного цикла» спор – споруляция (включает подготовительную стадию, стадию предспоры, образования оболочки, созревания и покоя) и прорастание, заканчивающееся образованием вегетативной формы. Процесс спорообразования генетически обусловлен.

Химический состав спор бактерий

Споры – форма покоящихся грамположительных бактерий. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.). При этом внутри одной бактерии образуется одна спора. Образование спор способствует сохранению вида и не является способом размножения. Спорообразующие палочковидные аэробные бактерии, у которых размер споры не превышает диаметр клетки, называются бациллами. Спорообразующие палочковидные анаэробные бактерии, у которых размер споры превышает размер бактериальной клетки, называются клостридиями.


Схема образования споры (по Г.Шлегелю). А и Б – образование септы. В и Г – окружение протопласта споры мембраной материнской клетки. Д – формирование кортекса и оболочек споры. Е – схема строения зрелой споры: 1 – цитоплазма с нуклеоидом; 2 – ЦМ споры; 3 – клеточная стенка споры; 4 – кортекс; 5 – внутренняя оболочка споры; 6 – наружная оболочка споры; 7 – экзоспориум.

Процесс спорообразования (споруляция) проходит ряд стадий. Вначале на одном из полюсов бактериальной клетки происходит конденсация нуклеоида и отделение его за счет образования септы. Затем ЦПМ начинает обрастать образовавшийся протопласт споры и возникает складка, состоящая из двух слоев ЦПМ, позднее они сливаются, в результате образовавшаяся предспора оказывается окруженной двойной оболочкой. Между обращенными друг к другу мембранами образуется зародышевая стенка, кортекс, а также расположенные снаружи от мембран наружная и внутренняя оболочки.

Протопласт споры содержит ЦПМ, цитоплазму, хромосому, все компоненты белоксинтезирующей системы и анаэробной энергообразующей системы. Стенка споры непосредственно окружает внутреннюю мембрану и представлена пептидогликаном, из которого формируется клеточная стенка прорастающей клетки. Кортекс – самый толстый слой оболочки споры, чувствительный к лизоциму. Оболочка споры построена из кератиноподобного белка. Плохая проницаемость ее определяет высокую устойчивость споры к действию различных химических веществ. Экзоспорий – липопротеиновая оболочка, содержащая немного углеводов. В состав споры входит дипиколиновая кислота, обусловливающая термоустойчивость споры. Затем вегетативная часть клетки отмирает, и спора сохраняется во внешней среде в течение длительных сроков.

Clostridium tetani. Электронная микроскопия. Стадии образования споры. Н – нуклеоид; СО – споровая оболочка; СПР – спорангий. Х80000.«Авакян А.А., Кац Л.Н., Павлова И.Б. Атлас анатомии бактерий, патогенных для человека и животных. М «Медицина».-1972.-183 с.»

Способность ряда патогенных бактерий образовывать длительно сохраняющиеся во внешней среде споры, обладающие высокой термоустойчивостью, обусловлена низким содержанием воды, повышенной концентрацией кальция, структурой и химическим составом ее оболочки.

В благоприятных условиях споры прорастают, проходя три последовательные стадии: активацию, инициацию, прорастание. При этом из одной споры образуется одна бактерия. Прорастание споры происходит в течение 4-5 ч, в то время как образование споры продолжается 18-20 ч.

Спорообразование, форма и расположение спор в клетке (вегетативной) является видовым свойством бактерии, что позволяет отличать их друг от друга. Форма спор может быть овальной, шаровидной, расположение в клетке – терминальное, т.е. на конце палочки (возбудитель столбняка), субтерминальное – ближе к концу палочки (возбудитель ботулизма) и центральное (сибиреязвенная бацилла).

Споры можно выявить при обычном окрашивании бактериальной клетки в виде не окрашенной области внутри бактериальной клетки и по методу Ожешко.

Свойства бактерий

Функция клеточной стенки бактерий

-Защита от внешних воздействий

-Защита от внутреннего давления клетки

-Обеспечение диффузии питательных веществ

Свойства клеточной стенки бактерий

Строение пептидогликана бактерий

Пептидогликан – (муреин, мукопептид) – параллельно расположенные молекулы гликана, состоящие из остатков N-ацетилгликозамина и N-ацетилмурамовая кислота, связанных пептидной связью.

Основу пептидной связи составляют тетрапептиды, отличающиеся у Гр(+) и (-) бактерий.

Тетрапептиды Гр(-) бактерий: L-аланин, D-глютаминовая кислота, L-мезодиаминопимелиновая кислота, D-аланин

Тетрапептиды Гр(+) бактерий: L-аланин, D-глютаминовая кислота, L-диаминопимелиновая кислота, D-аланин.

Оболочка Грам(+) бактерий

  1. Пептидогликан – 40-90%
  2. Тейхоловые кислоты, ковалентно связанные с пептидогликанами

Оболочка Грам(-) бактерий

  1. Трехслойная наружная оболочка(похожая на ЦПМ), связанная с пептидогликаном
  2. Пептидогликан
  3. Цитоплазмаическая мембрана

Оболочка представляет собой эндотоксин бактерий.

Безоболочечные формы бактерий

— Протопласты – бактерии, полностью лишенные клеточной стенки, нежизнеспособны

— Сферопласты – бактерии, частично лишенные клеточной стенки, нежизнеспособные

— L-формы – утратившие клеточную стенку под влиянием антибиотиков. Маловирулентны, способны к размножению, длительной персистенции(длительное выживание в организме) в организме человека и к реверсии в исходные высоковирулентное состояние. Вызывают вялотекущие хронические инфекции.

— Микоплазмы – мелкие полиморфные Грам(-) бактерии

Строение цитоплазматической мембраны бактерий

3х-слойное (2 слоя липидов, один слой белков) незамкнутые постоянные и временные(мезозомы) структуры в виде сложно закрученных структур.

Мезозома вызывает репликацию ДНК, она действует на нуклеоид, а с другой стороны она тесно прилегает к поперечной перегородке клетки – т.е. синтез перегородки клетки при размножении.

Функция цитоплазматической мембраны

  1. Транспортная(селективная проницаемость и транспорт веществ в бактерию)
  2. Энергетическая(перенос электронов и окислительные реакции у анаэробов) – аналог митохондрий
  3. Пластическая(биосинтез белка, биополимер оболочки, цитоплазматической мембраны, цитоплазмы)
  4. Информационная(биосинтез ДНК)

Цитоплазма бактерий

Читайте так же:  Трудовой кодекс рб ст41

Коллоидная система, содержащая аналог ядра – нуклеоид, РНК(16S рРНК, 23 рРНК), ДНК, другие биополимеры, рибосомы, включения органических(крахмал, Гликоген) и минеральных веществ(сера, карбонаты, фосфаты, волютин-по методу Нейссера), вакуоли.

Характеристика нуклеоида бактерий

  1. Кольцевидная структура(хромосома замкнута в форме кольца, может быть палочковидной)
  2. Отсутствие классических хромосом
  3. Отсутствие ядрышка
  4. Отсутствие оболочек
  5. Отсутствие гистонов
  6. Неподвижность

Жгутики и пили бактерий.

Жгутики – нитевидные белковые образования, берущие начало от базофильных образований в цитоплазме бактерий и состоят из сократительного белка флагеллина. Являются органами движения микроорганизмов.

Классификация бактерий по характеру расположения и количеству жгутиков

  1. Монотрихи – один жгутик 50-60 нм – холерный вибрион
  2. Перитрихи – множество по периметру бактерии, медленное, плавное, равномерное движение. Возбудитель брюшного тифа
  3. Лофотрихи – пучок жгутиков на одном из полюсов бактерии
  4. Амфитрихи – по одному жгутику или по пучку на противоположных полюсах бактерии.

Пили – их образуют только Гр(-) бактерии, они представляют своего рода ворсинки

  1. Общие (для адгезии – до фига)
  2. Коньюгативные (для обмена ген.информ)несколько

Капсулы бактерий

  1. Не являются жизненно важными структурами
  2. Представляют собой полисахаридный(реже полипептидный) продукт секреции бактерии или продукт набухания оболочки
  3. Все бактерии образуют капсульное вещество, однако отличаются по его количеству, степени вязкости, условия образования и способности его удерживать

Выявление капсул – метод Гинса-Бурри

Возбудитель сибирской язвы – образует капсулу только в человеке или в животном.

Свойства капсулы бактерий

  1. Многослойная фибриллярная структура
  2. Характеризуется мукидностью(слизистость) и растворимостью
  3. Защита от неблагоприятных факторов окружающей среды
  4. Блокада фагоцитоза
  5. Участие в адгезии(прилипание к субстрату)

Строение капсулы – Bacillus anthracis – сибирская язва

  1. Внутренний белковый слой
  2. Мукополисохаридный слой
  3. Основной белково-полисахаридный слой
  4. Наружный слой, состоящий из мукопептидов и полипептидов
  5. Иногда в капсулу включается гиалуронидаза – компонент клетки хозяина

Споры бактерий

Образуются у Грам(+) бактерий при неблагоприятных условиях

— Спора, предназначена сохранять вид бактерий и не является способом размножения

— Споры бактерий рода Bacillus не превышают диаметр клетки

— Споры бактерий рода Clostridium превышают диаметр клетки

Спора очень устойчива во внешней среде, предназначена для сохранения вида.

Споры бактерий. ПО расположению спор

Химический состав споры

— Низкое содержание H2O, K,P

— высокое содержание Ca, Mg

Структура споры

  1. Спороплазма
  2. Стенка споры(обычный пептидогликан)
  3. Кора – необычный пептидогликан(наличие варианта диаминопимиелиновой кислоты – дипихолината Ca)
  4. Оболочка – из кератиноподобного белка
  5. Экзоспории – 3х слойная липопротеиновая оболочка

Стадии спорогенеза

  1. Подготовительная(прекращение синтеза белка, появление липопротеидов, конденсация цитоплазмы)
  2. Стадия предспоры(образование 2хслойной цитоплазматической мембраны)
  3. Стадия образования оболочек(изнутри)
  4. Стадия созревания споры

Стадии прорастания споры

-Активация споры(повреждение оболочек)

-Начальная стадия(начало формирования вегетативной клетки)

Ветеринарная медицина

Споры и спорообразование

Споры (эндоспоры) бактерий — особый тип покоящихся репродуктивных клеток, характеризующихся резко сниженным уровнем метаболизма и высокой резистентностью.

Бактериальная спора формируется внутри материнской клетки и называется эндоспорой. Способностью к образованию спор обладают преимущественно палочковидные грамположительные бактерии родов Bacillus и Clostridium, из шаровидных бактерий лишь единичные виды, например Sporosarcina ureae. Как правило, внутри бактериальной клетки образуется только одна спора.

Основная функция спор — сохранение бактерий в неблагоприятных условиях внешней среды. Переход бактерий к спорообразованию наблюдается при истощении питательного субстрата, недостатке углерода, азота, фосфора, накоплении в среде катионов калия и марганца, изменении рН, повышении содержания кислорода и т. д.

От вегетативных клеток споры отличаются репрессией генома, почти полным отсутствием обмена веществ (анабиозом), малым количеством свободной воды в цитоплазме, повышением в ней концентрации катионов кальция и появлением дипиколиновой (пиридин-2,6-дикарбоновой) кислоты в виде Са-хелата, с которыми связывают пребывание спор в состоянии покоя и их термоустойчивость.

В световом микроскопе споры имеют вид овальных, иногда округлых, сильно преломляющих свет образований размером 0,8 — 1,0, 1,2— 1,5 мкм; они могут располагаться центрально (В. anthracis), субтерминально — ближе к концу (Cl. botulinum), терминально — на конце палочек (Cl. letani). Строение зрелой споры сложное и однотипное у разных видов бактерий. Центральная ее часть представлена сердцевиной, или спороплазмой, в состав которой входят нуклеиновые кислоты, белки и дипиколиновая кислота. Она содержит нуклеоид, рибосомы и нечетко выраженные мембранные структуры. Спороплазма окружена цитоплазматической мембраной, к ней прилегает зачаточный пептидогликановый слой, затем располагается специфический для спор массивный слой кортекса, или коры. На поверхности кортекса имеется внешняя мембрана. Снаружи спора одета многослойной оболочкой. У многих бактерий по окружности наружного слоя споровой оболочки располагается экзоспориум.

Спорообразование (споруляция) — один из сложнейших процессов дифференцировки бактериальной клетки, который контролируется комплексом специальных генов — спорулоном. У многих бацилл во время образования спор синтезируются полипептидные антибиотики, подавляющие рост вегетативных клеток.

Процесс образования спор проходит ряд последовательных стадий:

— подготовительная. Изменяется метаболизм, завершается репликация ДНК, и происходит се конденсация. Клетка содержит два или более нуклеоида, один из них локализуется в спорогенной зоне, остальные — в цитоплазме спорангия. Одновременно синтезируется дипиколиновая кислота;

— стадия предспоры. Со стороны цитоплазматической мембраны вегетативной клетки происходит врастание двойной мембраны, или септы, отделяющей нуклеоид с участком уплотненной цитоплазмы (спорогенная зона). В результате чего образуется проспора, окруженная двумя мембранами;

— образование оболочек. Вначале между мембранами проспоры образуется зачаточный пептидогликановый слой, затем над ним откладывается толстый пептидогликановый слой кортекса и вокруг его наружной мембраны формируется споровая оболочка;

— созревание споры. Заканчивается образование всех структур споры, она становится термоустойчивой, приобретает характерную форму и занимает определенное положение в клетке.

При попадании в благоприятные условия споры прорастают в вегетативные клетки. Этот процесс начинается с поглощения воды и гидратации структур споры. Одновременно активизируются ферменты и резко возрастает энергия дыхания. Литические ферменты разрушают покровы споры и пептидогликан кортекса, выделяются наружу дипиколиновая кислота и соли кальция. На месте разрыва оболочки споры возникает ростовая трубка и формируется вегетативная клетка. Прорастание спор длится около 4—5 ч.

Споры бактерий устойчивы к действию высоких температур, химических соединений, в том числе органических растворителей и поверхностно-активных веществ; могут длительное время (десятки, сотни лет) существовать в покоящемся состоянии.

Химический состав спор бактерий

Структура бактериальной клетки

Обозначения:

1-гранулы поли-β-оксимасляной кислоты;
2-жировые капельки;
3-включения серы;
4-трубчатые тилакоиды;
5-пластинчатые тилакоиды;
6-пузырьки;
7-хроматофоры;
8-нуклеоид;
9-рибосомы;
10-цитоплазма;
11-клеточная стенка;
12-цитоплазматическая мембрана;
13-мезосома;
14-вакуоли;
15ламелярные структуры;
16гранулы полисахарида;
17гранулы полифосфата.

Клеточная стенка

В клеточной стенки грамположительных бактерий содержится небольшое количество полисахаридов, липидов, белков. Основным компонентом клеточной стенки этих бактерий является многослойный пептидогликан (муреин, мукопептид), составляющий 40—90% массы клеточной стенки. С пептидогликаном клеточной стенки грамположительных бактерий ковалентно связаны тейхоевые кислоты (от греч. teichos — стенка).
В состав клеточной стенки грамотрицательных бактерий входит наружная мембрана, связанная посредством липопротеина с подлежащим слоем пептидогликана. На ультратонких срезах бактерий наружная мембрана имеет вид волнообразной трехслойной структуры, сходной с внутренней мембраной, которую называют цитоплазматической. Основным компонентом этих мембран является бимолекулярный (двойной) слой липидов. Внутренний слой наружной мембраны представлен фосфолипидами, а в наружном слое расположен липополисахарид (ЛПС). Липополисахарид наружной мембраны состоит из трех фрагментов: липида А — консервативной структуры, практически одинаковой у грамотрицательных бактерий; ядра, или стержневой, коровой части (лат. core — ядро), относительно консервативной олигосахаридной структуры (наиболее постоянной частью ядра ЛПС является кетодезоксиоктоновая кислота); высоковариабельнои О-специфической цепи полисахарида, образованной повторяющимися идентичными олигосахаридными последовательностями (О-антиген). Белки матрикса наружной мембраны пронизывают ее таким образом, что молекулы белка, называемые поринами, окаймляют гидрофильные поры, через которые проходят вода и мелкие гидрофильные молекулы.
При нарушении синтеза клеточной стенки бактерий под влиянием лизоцима,
пенициллина, защитных факторов организма образуются клетки с измененной (часто шаровидной) формой: протопласты — бактерии, полностью лишенные клеточной стенки; сферопласты — бактерии с частично сохранившейся клеточной стенкой. Бактерии сферо- или протопластного типа, утратившие способность к синтезу пептидогликана под влиянием антибиотиков или других факторов и способные размножаться, называются L-формами.
Они представляют собой осмотически чувствительные, шаровидные, колбовидные клетки различной величины, в том числе и проходящие через бактериальные фильтры. Некоторые L-формы (нестабильные) при удалении фактора, приведшего к изменениям бактерий, могут реверсировать, «возвращаясь» в исходную бактериальную клетку.
Между наружной и цитоплазматической мембранами находится периплазматическое пространство, или периплазма, содержащая ферменты (протеазы, липазы, фосфатазы, нуклеазы, бета-лактомазы) и компоненты транспортных систем.

Цитоплазматическая мембрана

Цитоплазматическая мембрана при электронной микроскопии ультратонких срезов представляет собой трехслойную мембрану (2 темных слоя толщиной по 2,5 нм разделены светлым — промежуточным). По структуре она похожа на плазмалемму клеток животных и состоит из двойного слоя фосфолипидов с внедренными поверхностными, а также интегральными белками, как бы пронизывающими насквозь структуру мембраны. При избыточном росте (по сравнению с ростом клеточной стенки) цитоплазматическая мембрана образует инвагинаты — впячивания в виде сложно закрученных мембранных структур, называемые мезосомами. Менее сложно закрученные структуры называются внутрицитоплазматическими мембранами.

Цитоплазма состоит из растворимых белков, рибонуклеиновых кислот, включений и многочисленных мелких гранул — рибосом, ответственных за синтез (трансляцию) белков. Рибосомы бактерий имеют размер около 20 нм и коэффициент седиментации 70S, в отличие от 80S-рибосом, характерных для эукариотических клеток. Рибосомные РНК (рРНК) — консервативные элементы бактерий («молекулярные часы» эволюции). 16S рРНК входит в состав малой субъединицы рибосом, а 23S рРНК — в состав большой субъединицы рибосом. Изучение 16S рРНК является основой геносистематики, позволяя оценить степень родства организмов.
В цитоплазме имеются различные включения в виде гранул гликогена, полисахаридов, бета-оксимасляной кислоты и полифосфатов (волютин). Они являются запасными веществами для питания и энергетических потребностей бактерий. Волютин обладает сродством к основным красителям и легко выявляется с помощью специальных методов окраски (например, по Нейссеру) в виде метахроматических гранул. Характерное расположение гранул волютина выявляется у дифтерийной палочки в виде интенсивно прокрашивающихся полюсов клетки.

Читайте так же:  Проживание в аппартаментах

Нуклеоид — эквивалент ядра у бактерий. Он расположен в центральной зоне бактерий в виде двунитевой ДНК, замкнутой в кольцо и плотно уложенной наподобие клубка. Ядро бактерий, в отличие от эукариот, не имеет ядерной оболочки, ядрышка и основных белков (гистонов). Обычно в бактериальной клетке содержится одна хромосома, представленная замкнутой в кольцо молекулой ДНК.
Кроме нуклеоида, представленного одной хромосомой, в бактериальной клетке имеются внехромосомные факторы наследственности — плазмиды, представляющие собой ковалентно замкнутые кольца ДНК.

Капсула, микрокапсула, слизь

Капсула — слизистая структура толщиной более 0,2мкм, прочно связанная с клеточной стенкой бактерий и имеющая четко очерченные внешние границы. Капсула различима в мазках-отпечатках из патологического материала. В чистых культурах бактерий капсула образуется реже. Она выявляется при специальных методах окраски мазка (например, по Бурри-Гинсу), создающих негативное контрастирование веществ капсулы: тушь создает темный фон вокруг капсулы. Капсула состоит из полисахаридов (экзополисахаридов), иногда из полипептидов, например, у сибиреязвенной бациллы она состоит из полимеров D-глутаминовой кислоты. Капсула гидрофильна, препятствует фагоцитозу бактерий. Капсула антигенна: антитела против капсулы вызывают ее увеличение (реакция набухания капсулы).
Многие бактерии образуют микрокапсулу — слизистое образование толщиной менее 0,2мкм, выявляемое лишь при электронной микроскопии. От капсулы следует отличать слиэь — мукоидные экзополисахариды, не имеющие четких границ. Слизь растворима в воде.
Бактериальные экзополисахариды участвуют в адгезии (прилипании к субстратам), их еще называют гликокаликсом. Кроме синтеза
экзополисахаридов бактериями, существует и другой механизм их образования: путем действия внеклеточных ферментов бактерий на дисахариды. В результате этого образуются декстраны и леваны.

Жгутики бактерий определяют подвижность бактериальной клетки. Жгутики представляют собой тонкие нити, берущие начало от цитоплазматической мембраны, имеют большую длину, чем сама клетка. Толщина жгутиков 12-20 нм, длина 3-15 мкм. Они состоят из 3 частей: спиралевидной нити, крюка и базального тельца, содержащего стержень со специальными дисками (1 пара дисков — у грамположительных и 2 пары дисков — у грамотрицательных бактерий). Дисками жгутики прикреплены к цитоплазматической мембране и клеточной стенке. При этом создается эффект электромотора со стержнем-мотором, вращающим жгутик. Жгутики состоят из белка — флагеллина (от flagellum — жгутик); является Н-антигеном. Субъединицы флагеллина закручены в виде спирали.
Число жгутиков у бактерий различных видов варьирует от одного (монотрих) у холерного вибриона до десятка и сотен жгутиков, отходящих по периметру бактерии (перитрих) у кишечной палочки, протея и др. Лофотрихи имеют пучок жгутиков на одном из концов клетки. Амфитрихи имеют по одному жгутику или пучку жгутиков на противоположных концах клетки.

Пили (фимбрии, ворсинки) — нитевидные образования, более тонкие и короткие (3-10нм х 0, 3-10мкм) , чем жгутики. Пили отходят от поверхности клетки и состоят из белка пилина, обладающего антигенной активностью. Различают пили, ответственные за адгезию, то есть за прикрепление бактерий к поражаемой клетке, а также пили, ответственные за питание, водносолевой обмен и половые (F-пили), или конъюгационные пили. Пили многочисленны — несколько сотен на клетку. Однако, половых пилей обычно бывает 1-3 на клетку: они образуются так называемыми «мужскими» клетками-донорами, содержащими трансмиссивные плазмиды (F-, R-, Col-плазмиды). Отличительной особенностью половых пилей является взаимодействие с особыми «мужскими» сферическими бактериофагами, которые интенсивно адсорбируются на половых пилях.

Споры — своебразная форма покоящихся фирмикутных бактерий, т.е. бактерий
с грамположительным типом строения клеточной стенки. Споры образуются при неблагоприятных условиях существования бактерий (высушивание, дефицит питательных веществ и др.. Внутри бактериальной клетки образуется одна спора (эндоспора). Образование спор способствует сохранению вида и не является способом размножения, как у грибов. Спорообразующие бактерии рода Bacillus имеют споры, не превышающие диаметр клетки. Бактерии, у которых размер споры превышает диаметр клетки, называются клостридиями, например, бактерии рода Clostridium (лат. Clostridium — веретено). Споры кислотоустойчивы, поэтому окрашиваются по методу Ауески или по методу Циля-Нильсена в красный, а вегетативная клетка в синий цвет.

Форма спор может быть овальной, шаровидной; расположение в клетке -терминальное, т.е. на конце палочки (у возбудителя столбняка), субтерминальное — ближе к концу палочки (у возбудителей ботулиэма, газовой гангрены) и центральное (у сибиреязвенной бациллы). Спора долго сохраняется из-за наличия многослойной оболочки, дипиколината кальция, низкого содержания воды и вялых процессов метаболизмов. В благоприятных условиях споры прорастают, проходя три последовательные стадии: активация, инициация, прорастание.

Особенности химического состава клеток бактерий

Бактериальная клетка является полноценным живым организмом. Чтобы понимать, как происходит организация обменных процессов в ней, необходимо знать химический состав клеток бактерий.

Морфология клеточной стенки

Клеточная стенка ─ это наружный слой, защищающий клетку от внешних воздействий и придающий ей постоянную форму, к примеру, округлую или форму вибриона, палочки. Клеточная стенка играет функцию скелета. Она такая же плотная, как и растительная оболочка, в отличие от животной клеточной оболочки, которая мягкая. Внутри самой клетки давление в несколько раз больше, чем атмосферное, и если бы не ее плотная оболочка, то ее разорвало бы. Толщина стенки варьируется от 0,01 до 0,04 мкм и составляет в среднем 10-50% от общей массы.

Морфология цитоплазмы

При возникновении негативных химических или физических воздействий бактерии образуют споры, в отличие от грибов, которым споры необходимы для размножения. Для обнаружения спор бактерий используется метод нахождения по Ожешко. Он позволяет выявлять споры благодаря наличию в оболочке спор кальциевой соли. Размеры спор у разных бактерий отличаются, что немаловажно при их дифференциации. Жизненный цикл спор включает в себя такие этапы:

  • подготовительный;
  • стадия предспоры;
  • создание оболочки;
  • стадия созревания споры;
  • стадия спокойствия.

Отличия вирусов от бактерий

Основное отличие морфологии вирусов от бактерий в том, что вирусы не имеют клеточного строения. Вирусы способны размножаться только внутри клетки. Это относится и к вирусам бактерий ─ фагам. Морфологию и структуру вирусов можно изучить только с применением мощных микроскопов. Форма вирусов так же разнообразна, как и форма клеток бактерий. Если сравнить химический состав бактериальной клетки и вирусов, то химический состав простых вирусов состоит из белка и нуклеиновой кислоты. Состав сложных вирусов включает в себя полипротеиновые соединения. Уникальность вирусов в том, что они могут содержать только один из носителей информации – либо ДНК, либо РНК. Носитель генной информации вирусов представлен несколькими видами нуклеиновых кислот. У некоторых вирусов, например вирус герпеса, нуклеиновые кислоты могут быть в цитоплазме зараженной клетки и выдавать себя за плазмиды.

Особенности химического состава клеток бактерий

Бактериальная клетка является полноценным живым организмом. Чтобы понимать, как происходит организация обменных процессов в ней, необходимо знать химический состав клеток бактерий.

Морфология клеточной стенки

Клеточная стенка ─ это наружный слой, защищающий клетку от внешних воздействий и придающий ей постоянную форму, к примеру, округлую или форму вибриона, палочки. Клеточная стенка играет функцию скелета. Она такая же плотная, как и растительная оболочка, в отличие от животной клеточной оболочки, которая мягкая. Внутри самой клетки давление в несколько раз больше, чем атмосферное, и если бы не ее плотная оболочка, то ее разорвало бы. Толщина стенки варьируется от 0,01 до 0,04 мкм и составляет в среднем 10-50% от общей массы.

Морфология цитоплазмы

Отличия вирусов от бактерий

Основное отличие морфологии вирусов от бактерий в том, что вирусы не имеют клеточного строения. Вирусы способны размножаться только внутри клетки. Это относится и к вирусам бактерий ─ фагам. Морфологию и структуру вирусов можно изучить только с применением мощных микроскопов. Форма вирусов так же разнообразна, как и форма клеток бактерий. Если сравнить химический состав бактериальной клетки и вирусов, то химический состав простых вирусов состоит из белка и нуклеиновой кислоты. Состав сложных вирусов включает в себя полипротеиновые соединения. Уникальность вирусов в том, что они могут содержать только один из носителей информации – либо ДНК, либо РНК. Носитель генной информации вирусов представлен несколькими видами нуклеиновых кислот. У некоторых вирусов, например вирус герпеса, нуклеиновые кислоты могут быть в цитоплазме зараженной клетки и выдавать себя за плазмиды.