Патент трёхкулачкового патрона

Трехкулачковый самоцентрирующий патрон

Использование в станкостроении, в частности в приспособлениях для крепления деталей типа тел вращения. Сущность изобретения: настройка патрона на заданную величину эксцентриситета осуществляется вращением винта 10 одного из механизмов настройки на эксцентриситет, при этом шестерня 9 перемещает сухарь 8, наклонная сторона которого перемещается параллельно самой себе на заданное расстояние. Между наклонной стороной сухаря 8 и контактируемой поверхностью вставки образуется зазор, равный заданной величине смещения. После этого устанавливают калибровочную оправку и винтами 10 второго и третьего механизмов настройки, вращая их в противоположном направлении относительно вращения первого винта 10, добиваются зажима оправки, при этом ее ось будет смещена относительно оси шпинделя станка. Зажим детали осуществляется перемещением одного из кулачков, который воздействует на следующий, а он, в свою очередь, на третий, при этом все кулачки одновременно и на одинаковое расстояние перемещаются в радиальном направлении. 3 ил.

Изобретение относится к станкостроению, в частности к приспособлениям для крепления деталей типа тел вращения.

Известен трехкулачковый патрон, в корпусе которого расположены радиально перемещающиеся кулачки, связанные с приводом их перемещения, при этом каждый кулачок содержит механизм настройки на эксцентриситет, который выполнен в виде винтовой пары [1] Недостатком этого патрона является невысокая точность установки смещения зажимного элемента при перемещении на малые величины эксцентриситета, присущие винтовой паре.

Наиболее близким к предлагаемому патрону по технической сущности и достигаемому результату является устройство, в котором обеспечивается крепление деталей в большом диапазоне размеров. В корпусе устройства выполнено трехгранное отверстие, в котором расположены клиновые кулачки с направляющими и рабочими гранями, образующие соответствующие равносторонние треугольники, при этом на кулачках установлены дополнительные губки. Привод перемещения связан с одним из кулачков и расположен параллельно его направляющей грани [2] Однако этот патрон не обеспечивает крепления деталей неправильной формы (обработку деталей с эксцентриситетом).

Техническим результатом изобретения является возможность крепления деталей неправильной формы (обработки деталей с заданным эксцентриситетом).

Это достигается тем, что в зажимное устройство, содержащее корпус с трехгранным углублением, в котором с возможностью относительного перемещения установлены клинья с направляющими и рабочими гранями, жестко связанные с кулачками, а один из клиньев связан с механизмом перемещения кулачков, вводится механизм настройки кулачков на эксцентриситет, выполненный в виде соответствующих количеству кулачков клинообразных сухарей, первая из поверхностей каждого из которых предназначена для взаимодействия с направляющими гранями соответствующих кулачков, а на второй его поверхности выполнены зубья, образующие с введенными в патрон шестернями реечную передачу, при этом ось шестерен располагается в корпусе патрона.

На фиг. 1 представлен патрон; на фиг. 2 разрез А-А на фиг. 1; на фиг. 3 узел I, на фиг. 1.

В корпусе 1 выполнено трехгранное углубление 2, в котором расположены клинья 3 с направляющими гранями 4, жестко связанные с зажимными кулачками 5. Обойма 6 охватывает корпус 1 и крепится к нему винтами 7. Механизм настройки на эксцентриситет выполнен в виде сухарей 8, число которых соответствует числу зажимных кулачков 5, при этом одна из поверхностей каждого из них выполнена под углом к одной из сторон трехгранного паза и взаимодействует с направляющими гранями 4 клина 3. Другая сторона каждого из упомянутых сухарей выполнена в виде рейки, связанной с шестерней 9, установленной на оси винта 10, ось которого расположена в корпусе.

Настройка патрона на заданную величину эксцентриситета осуществляется следующим образом.

Вращают винт 10 одного из механизмов настройки на эксцентриситет, при этом шестерня 9 перемещает сухарь 8, наклонная сторона которого перемещается параллельно самой себе на заданное расстояние. Между наклонной стороной сухаря 8 и контактируемой поверхностью вставки образуется зазор, равный заданной величине смещения, после чего устанавливают калибровочную оправку (не показана) и винтами 10 второго и третьего механизмов настройки на эксцентриситет, вращая их в противоположном направлении относительно вращения первого винта 10, добиваются зажима калибровочной оправки, при этом ось калибровочной оправки будет смещена относительно оси шпинделя станка на заданную величину эксцентриситета. Таким образом обеспечивается постоянно заданное положение сухарей 8. Патрон готов к зажиму деталей.

Зажим детали осуществляется следующим образом. При перемещении с помощью механизма перемещения одного из кулачков он воздействует на следующий кулачок, который, в свою очередь, воздействует на третий, при этом все кулачки одновременно и на одинаковое расстояние перемещаются в радиальном направлении, обеспечивая крепление детали.

Если необходимо зажать деталь без эксцентриситета, то ось калиброванной оправки совмещают с осью шпинделя.

ТРЕХКУЛАЧКОВЫЙ САМОЦЕНТРИРУЮЩИЙ ПАТРОН, кулачки которого, выполненные в виде клиньев с направляющими и рабочими гранями, расположены в трехгранном углублении корпуса и связаны с приводом их перемещения, отличающийся тем, что патрон снабжен механизмом настройки кулачков на эксцентриситет, выполненный в виде соответствующих количеству кулачков клинообразных сухарей, первая из поверхностей каждого из которых предназначена для взаимодействия с направляющими гранями соответствующих кулачков, а на второй его поверхности выполнены зубья, образующие с введенными в патрон шестернями реечную передачу, при этом оси шестерн расположены в корпусе патрона.

токарный плавающий патрон

Патрон выполнен самоцентрирующим трехкулачковым состоящим из корпуса, спирального колеса, конических колес и реек со сменными накладными кулачками. Для расширения технологических возможностей он снабжен основным диском, предназначенным для базирования и закрепления патрона к шпинделю станка с помощью зажимного фланца, диском со сферической периферийной наружной поверхностью для базирования и жесткого закрепления на нем корпуса торцом, свободным от кулачков, и планшайбой, выполненной с подвижным кольцом на одном торце, охватывающим основной диск, и ответной сферической поверхностью на противоположном торце, контактирующей со сферической периферийной наружной поверхностью диска, центр которой расположен на продольной оси корпуса. При этом корпус, диск со сферической наружной поверхностью, планшайба, диск основной и зажимной фланец соединены между собой шпильками, проходящими с зазором в отверстиях этих деталей, с возможностью углового смещения и наклона продольной оси патрона на 2 3°. При этом для радиального смещения оси патрона и фиксации относительно шпинделя подвижное кольцо имеет по периферии радиально расположенные соответственно винты с гайками и винты-фиксаторы с контргайками. 11 ил.

Рисунки к патенту РФ 2449862

Изобретение относится к технологии машиностроения, к изготовлению оснастки и может быть использовано для обработки и восстановления деталей типа дисков и валов на токарных, круглошлифовальных, внутришлифовальных и некоторых других станках.

Известны самоцентрирующие трехкулачковые спирально-реечные токарные патроны (рис.17, [1]) общего назначения, которые стандартизованы, обычно имеют сборные кулачки и два комплекта цельных кулачков — прямых и обратных для установки больших заготовок. В целях переналадки используют накладные кулачки (рис.19, [1]), которые растачивают в размер базы заготовки. Пример условного обозначения патрона типа 1 диаметром 250 мм со сборными кулачками (исполнения 2), класса точности П (повышенного): патрон 7100-0010-П-ГОСТ 2675-80.

Недостатком известной конструкции трехкулачкового спирально-реечного самоцентрирующего токарного патрона является очень длительное время, затрачиваемое на наладку, а именно на установку, выверку и закрепление заготовки на операциях по устранению дефектов. Например, после химико-термической обработки и других операций заготовки типа дисков (кольца, колеса зубчатые, планшайбы и др.) деформируются как в радиальном, так и торцовом направлениях. Так на фиг.2 показана заготовка колеса зубчатого конического с дефектом торцового биения поверхности С торца ступицы относительно оси базового отверстия Е диаметром dH6 более 0,03 мм, допуск Т которого должен быть не более 0,03 мм, и дефектом торцового биения поверхности К внешнего конуса зубчатого торца по выступам зубьев относительно оси базового отверстия Е диаметром dH6 более 0,03 мм, допуск ТК которого должен быть не более 0,03 мм. Помимо этого наладка по исправлению этих дефектов производится вручную и отличается невысокой точностью, что удорожает себестоимость изготовления заготовки и усложняет процесс механической обработки.

Задачей изобретения является расширение технологических возможностей оснастки, позволяющей механизировать наладку, сократить время и повысить точность поднастройки и выверки при обработке заготовок деталей типа дисков и валов, получившие дефекты в процессе обработки и транспортировки, с целью снижения себестоимости и упрощения технологического процесса.

Поставленная задача решается с помощью предлагаемого самоцентрирующего трехкулачкового токарного патрона, состоящего из корпуса, спирального колеса, конических колес и реек со сменными накладными кулачками, при этом он снабжен основным диском, предназначенным для базирования и закрепления патрона к шпинделю станка с помощью зажимного фланца, диском со сферической периферийной наружной поверхностью для базирования и жесткого закрепления на нем корпуса торцом, свободным от кулачков, и планшайбой, выполненной с подвижным кольцом на одном торце, охватывающим основной диск, и ответной сферической поверхностью на противоположном торце, контактирующей со сферической периферийной наружной поверхностью диска, центр которой расположен на продольной оси корпуса, при этом корпус, диск со сферической наружной поверхностью, планшайба, диск основной и зажимной фланец соединены между собой шпильками, проходящими с зазором в отверстиях этих деталей, с возможностью углового смещения и наклона продольной оси патрона на 2 3°, при этом для радиального смещения оси патрона и фиксации относительно шпинделя подвижное кольцо имеет по периферии радиально расположенные соответственно винты с гайками и винты-фиксаторы с контргайками.

Читайте так же:  Калужский мировой суд

Особенности конструкции предлагаемого токарного плавающего патрона поясняются чертежами.

На фиг.1 показан для примера чертеж готовой детали колеса конического прямозубого, наружн. диаметром — 148 мм, шириной — 49,56 мм, число зубьев — 30, модуль вн. окружн. — 5 мм, норм. исх. контур — ГОСТ 13754-81, степень точности — 8-С по ГОСТ 1758-81, изг. из стали 45 ГОСТ 1050-88; на фиг.2 — чертеж колеса конического, прошедшей термическую обработку — закалку НВ 280 300, с дефектами торцового биения поверхностей ступицы С и конической поверхности К внешнего конуса зубчатого торца по выступам зубьев относительно оси базового отверстия Е; на фиг.3 — конструкция предлагаемого патрона, частичное продольное сечение Б-Б на фиг.4, патрон настроен на нулевые радиальное и угловое смещения оси зажимной части корпуса относительно продольной оси шпинделя и укомплектован прямыми кулачками; на фиг.4 — вид по А на фиг.3, патрон укомплектован прямыми кулачками; на фиг.5 — сечение В-В на фиг.4, где показан винт регулировочный; на фиг.6 — сечение Г-Г на фиг.4, где показан винт — фиксатор; на фиг.7 — общий вид сбоку, патрон настроен на угловое смещение оси зажимной части корпуса относительно продольной оси шпинделя и укомплектован прямыми кулачками; на фиг.8 — общий вид сбоку, патрон настроен на радиальное смещение оси зажимной части корпуса относительно продольной оси шпинделя и укомплектован прямыми кулачками; на фиг.9 — схема проверки с целью выявления радиального и углового биения оси центрального отверстия с помощью контрольной оправки и индикатора относительно внешнего конуса зубчатого торца по выступам зубьев и торцовое биение конуса в заготовке, прошедшей термическую обработку; на фиг.10 — схема установления углового смещения (а также по необходимости и радиального), выявленного при контроле, патрон укомплектован обратными расточенными кулачками, восстановленные, например, растачиванием поверхности центрального отверстия; на фиг.11 — операционный эскиз технологической операции по ликвидации обнаруженного дефекта — биения величиной Т мм торца С ступицы, патрон укомплектован прямыми кулачками, базирование по восстановленной поверхности центрального отверстия с помощью оправки, патрон настроен на угловое смещение оси зажимной части корпуса относительно продольной оси шпинделя.

Предлагаемый токарный плавающий патрон относится к самоцентрирующим, трехкулачковым, спирально-реечным патронам для обработки заготовок типа дисков (кольца, колеса зубчатые, планшайбы и др.) и валов на токарных, круглошлифовальных, торцекруглошлифовальных, внутришлифовальных и некоторых других станках, при этом плавающим патрон является в момент настройки и наладки, а во время обработки он жестко закреплен на шпинделе, как все традиционные токарные патроны.

Предлагаемый самоцентрирующий, трехкулачковый, токарный, плавающий патрон состоит из корпуса 1, изготовленного из серого чугуна, стального спирального колеса 2, у которого один торец является венцом конического прямозубого колеса, входящего в зацепление с коническими колесами 3, приводимыми во вращение вручную при зажиме и разжиме обрабатываемых заготовок. На другом торце колеса 2 нарезаны спиральные зубья, входящие в зацепление со спиральными зубьями кулачков 4 или реек со сменными накладными кулачками (не показаны). Эти детали заимствованы у традиционной конструкции патрона, изготовляемого по ГОСТ 2675-80.

Корпус 1 предлагаемого патрона свободным от кулачков торцом базируется и жестко крепится к торцу диска 5, который имеет сферическую периферийную наружную поверхность 6 радиусом R, центр которой расположен на продольной оси корпуса. Величина радиуса R сферы выбирается в зависимости от габаритов патрона и номенклатуры обрабатываемых заготовок, а также от максимальных величин дефектов, для устранения которых предназначен патрон.

Диск 5 с корпусом 1 смонтирован на торце планшайбы 7, которая имеет сферическую поверхность 8, ответную сферической периферийной наружной поверхности 6 радиусом R, благодаря которой диск с корпусом центрируются относительно общей продольной оси патрона.

На противоположном торце от торца со сферической периферийной наружной поверхностью 8 радиусом R планшайбы 7 закреплено подвижное кольцо 9, которое ориентируется буртиком 10 с выточкой 11 на планшайбе с радиальным зазором . Кольцо 9 охватывает основной диск 12, которым вся конструкция патрона в сборе базируется и крепится с помощью зажимного фланца 13 на шпинделе 14 станка.

Диск 5 индивидуально крепится к корпусу 1 винтами 15, а планшайба 7 соединена со шпинделем 14 резьбовыми шпильками 16, проходящими через сквозные отверстия в кольце 9 и зажимном фланце 13. Это сделано с целью углового смещения сразу всего узла крепления заготовки относительно узла крепления патрона к шпинделю и отдельно взаимного радиального смещения этих узлов.

Кроме того, узел крепления заготовки, состоящий из корпуса 1 и диска 5 со сферической поверхностью 6, соединен с узлом крепления патрона к шпинделю, состоящий из планшайбы 7 со сферической поверхностью 8, диска основного 12, кольца 9 и зажимного фланца 13, резьбовыми шпильками 17, проходящими с зазором в отверстиях этих деталей. Это соединение позволяет наклонять продольную ось сборной конструкции патрона на угол =2 3°.

Для быстрого и эффективного радиального смещения патрона с заготовкой относительно шпинделя 14 подвижное кольцо 9 имеет радиально расположенные по периферии винты 18 с гайками 19, последние расположены в пазах основного диска 12, причем при выкручивании винта из гайки она упирается в основной диск, увеличивая зазор между диском и кольцом.

Для фиксации установленного зазора, который легко может сбиться под действием развивающихся больших силовых динамических нагрузок, в кольце 9 имеются радиально расположенные по периферии винты-фиксаторы 20, которые вворачиваются в контргайки 21, которые, в свою очередь, вворачиваются в резьбовые отверстия кольца. Наличие резьбы с разными шагами на винтовых парах: винт и резьбовое отверстие контргайки и наружная резьбовая поверхность контргайки и резьбовое отверстие кольца, позволяет надежно зафиксировать установленный зазор.

Работа с использованием предлагаемого патрона производится в следующей последовательности.

В зависимости от вида дефекта заготовки зажимную часть патрона подвергают угловому смещению (см. фиг.7), радиальному смещению (см. фиг.8) либо угловому и радиальному смещениям одновременно.

Для устранения дефектов заготовки, например конического прямозубого колеса, показанного на фиг.1 и 2, заготовку устанавливают в специально расточенные обратные кулачки (см. фиг.9) предлагаемого токарного патрона и делают проверку торцового биения конуса К выступов зубьев индикатором 22. Если измеренная величина биения ТК ИЗ превышает допустимую величину ТК , то измеренную погрешность делят пополам (ТК ИЗ /2) и используют в дальнейшем при регулировке. Регулировка заключается в угловом смещении, т.е. повороте корпуса патрона вместе с зажатой заготовкой и диском 5 относительно центра сферической поверхности 8 планшайбы 7 (см. фиг.10). Далее регулировочными винтами 18 (обычно в количестве 4 шт., равномерно расположенных по диаметру кольца) производят радиальное смещение оси патрона относительно оси шпинделя, как это показано на фиг.8, до тех пор, пока не будет устранено биение поверхности К зубчатого венца. Затем окончательно делают проверку торцового биения конуса К выступов зубьев индикатором и закрепляют патрон в таком положении с фиксацией винтами-фиксаторами 20 и контргайками 21.

После чего растачивают окончательно базовое посадочное отверстие Е (см. фиг.1) заготовки и подрезают базовый торец С ступицы по возможности с одного установа. Если последнее не удается, то базовый торец С ступицы подрезают с базированием на разжимную оправку 23 по окончательно обработанному отверстию, произведенному на предварительной операции (см. фиг.11).

Предлагаемый патрон расширяет технологические возможности оснастки и позволяет его успешно использовать при обработке не только заготовок типа дисков, но и при обработке валов. Например, по ряду причин: нежесткости конструкции заготовки вала, прогибы и деформация заготовки при действии больших сил резания, воздействие химико-термических операций и т.п., требуется изменить местоположение центровочного отверстия. Это изменение осуществляют путем пересверливания центровочного отверстия с использованием предлагаемого плавающего патрона. Предлагаемая конструкция патрона дает возможность поднастройки и выверки с целью снижения погрешности установки, которые возникают на промежуточных операциях технологического процесса, например, черновые токарные, химико-термические (цементация, закалка и др.) при обработке нежестких валов и др. видов заготовок валов.

Предлагаемый плавающий патрон позволяет механизировать наладку, сократить время и повысить точность поднастройки и выверки при обработке заготовок деталей типа дисков, получившие дефекты в процессе обработки и транспортировки, упростить технологический процесс, повысить производительность, улучшить качество обработки и снизить себестоимость обрабатываемых изделий.

Читайте так же:  Отец одиночка как оформить

1. Станочные приспособления: Справочник. В 2-х т. / Ред. совет: Б.Н.Вардашкин (пред.) и др. — М.: Машиностроение, 1984. Т.2 / Под ред. Б.Н.Вардашкина, В.В.Данилевского. 1984. С.163 172, рис.17, 19, табл. № 25.

ФОРМУЛА ИЗОБРЕТЕНИЯ

Патрон самоцентрирующий трехкулачковый токарный, состоящий из корпуса, спирального колеса, конических колес и реек со сменными накладными кулачками, отличающийся тем, что он снабжен основным диском, предназначенным для базирования и закрепления патрона к шпинделю станка с помощью зажимного фланца, диском со сферической периферийной наружной поверхностью для базирования и жесткого закрепления на нем корпуса торцом, свободным от кулачков, и планшайбой, выполненной с подвижным кольцом на одном торце, охватывающим основной диск, и ответной сферической поверхностью на противоположном торце, контактирующей со сферической периферийной наружной поверхностью диска, центр которой расположен на продольной оси корпуса, при этом корпус, диск со сферической наружной поверхностью, планшайба, диск основной и зажимной фланец соединены между собой шпильками, проходящими с зазором в отверстиях этих деталей, с возможностью углового смещения и наклона продольной оси патрона на 2° 3°, при этом для радиального смещения оси патрона и фиксации относительно шпинделя подвижное кольцо имеет по периферии радиально расположенные соответственно винты с гайками и винты-фиксаторы с контргайками.

трехкулачковый самоцентрирующий токарный патрон для скоростной обработки деталей

Изобретение используют в металлорежущих станках для закрепления деталей. В корпусе патрона размещены в контакте друг с другом три центрирующих элемента, на каждом из которых закреплены зажимные кулачки. Изобретение позволяет обеспечить зажим любых деталей во всех диапазонах усилий зажима. 4 з.п. ф-лы, 3 ил.

Рисунки к патенту РФ 2191093

Изобретение относится к области станкостроения и металлообработки, в частности к устройствам, используемых в металлорежущих и токарных станках для закрепления деталей.

Предшествующий уровень техники.

Известен трехкулачковый самоцентрирующий патрон, в котором зажимные кулачки, выполненные в виде трех клиновидных элементов с направляющими и рабочими гранями, расположены в трехгранном углублении корпуса и сопряжены так, что их направляющие грани всегда образуют равносторонний треугольник при любом перемещении кулачков с помощью привода, выполненного в виде установленной в корпусе патрона червячной передачи, состоящей из трубы с червяком на одном конце и червячного колеса, расположенного на оси винта, размещенного в тангенсально расположенном отверстии корпуса зажимного устройства и связанного гайкой с одним кулачком для его перемещения, а второй конец трубы снабжен подпружиненной кулачковой муфтой, тормозящей червяк в процессе сближения кулачков, расположенных в трехгранном углублении корпуса патрона (см. авт. св. РФ 503642, М. Кл. 6 В 23 В 31/10).

Это устройство имеет ограниченные технологические возможности, так как увеличивается трение между приводом кулачков и корпусом патрона при увеличении усилия зажима детали, что значительно увеличивает усилие, приложенное к приводу.

Для устранения указанных недостатков и для получения технического результата, заключающегося в создании трехкулачкового самоцентрирующего патрона с приводом, обеспечивающим зажим любых деталей во всех допустимых диапазонах усилий зажима, предлагается в трехкулачковый самоцентрирующий патрон, содержащий конус Морзе с внутренней поверхностью, корпус с углублением, образованным расположенными по углом 60 o тремя боковыми направляющими гранями, между которыми, с возможностью взаимного перемещения, расположены три центрирующих элемента с закрепленными на них зажимными кулачками, каждый из центрирующих элементов имеет направляющую грань, взаимодействующую с боковой направляющей гранью углубления корпуса, и грани, расположенные под углом 30 o к направляющей грани и контактирующие с соседними центрирующими элементами, один из которых связан с гайкой, расположенной на оси винта, размещенного в тангенсально расположенном отверстии корпуса, внутри конуса Морзе по центральной оси патрона проходит труба, выполненная с возможностью прохождения внутри шпинделя, и на одном ее конце установлена подпружиненная муфта, а на втором — выполнена винтовая резьба, входящая в зацепление с червячным колесом, закрепленным на винте, ввести две гайки и две подпружиненные друг относительно друга втулки с упорами, на внутренней поверхности конуса Морзе и на трубе выполнены выступы, одна из гаек закреплена на трубе, вторая — на внутренней поверхности конуса Морзе, а втулки установлены в контакте с гайками, при этом втулка, контактирующая с гайкой, закрепленной на внутренней трубе, уперта в выступ на внутренней поверхности конуса Морзе, а втулка, контактирующая с гайкой, закрепленной на внутренней поверхности конуса Морзе, уперта в выступ на внутренней трубе.

Кроме того, для снижения усилия перемещения центрирующих элементов по направляющим граням корпуса между направляющими гранями центрирующих элементов и боковыми направляющими гранями корпуса размещены улучшающие скольжение материалы или элементы.

Усилие перемещения центрирующих элементов также можно уменьшить, если улучшающие скольжение материалы или элементы расположить между взаимодействующими гранями центрирующих элементов.

С целью использования патрона на стандартных установочных местах внутренняя труба имеет сочленение, а внешний торец тангенсально расположенного винта выполнен под стандартный четырехгранный ключ.

Совокупность указанных признаков обеспечивает заявленный технический результат.

Краткое описание фигур чертежей.

На фиг. 1 изображен общий вид устройства; на фиг.2 вид устройства по сечению А-А; на фиг.3 — вариант исполнения механизма подпружинивания.

Вариант осуществления изобретения.

Ниже приводится вариант выполнения устройства по изобретению, который наиболее полно отображает существо и преимущества изобретения, но не ограничивает возможности использования этого изобретения.

Трехкулачковый самоцентрирующий патрон содержит корпус 1, в котором расположено углубление, образованное расположенными под углом 60 o направляющими гранями 2. В углублении между гранями 2 расположены три центрирующих элемента 3. У каждого центрирующего элемента 3 имеется направляющая грань 4, расположенная в той же плоскости, что направляющая грань 2. Под углом 30 o к направляющей грани 4 центрирующего элемента 3 расположены две контактирующие грани 5 и 6, контактирующие соответственно с контактирующей гранью 6 предыдущего центрирующего элемента 3 и с контактирующей гранью 5 последующего центрирующего элемента. К центрирующим элементам 3 крепятся зажимные кулачки 7 (на фиг. 1 не показаны). Один центрирующий элемент 3 жестко связан с гайкой 8, расположенной на резьбе 9 тангенсально расположенного винта 10. На оси винта 10 находится червячное колесо 11, входящее в зацепление с винтовой резьбой 12, расположенной на одном конце внутренней трубы 13, проходящей вдоль оси патрона внутри конуса 14 Морзе. На выступающий за шпиндель 15 второй конец внутренней трубы надет упорный подшипник 16, касающийся заднего конца шпинделя. С другой стороны подшипника 16 касается пакет тарельчатых пружин 17, поджатых обоймой 18. Между обоймой 18 и элементом привода станка 19 находится муфта 20. К внутренней трубе 13 прикреплена гайка 21, со стороны корпуса патрона в нее упирается втулка 22 с упором 23, поджатая пружиной 24. Другой стороной пружина 24 упирается во втулку 25, которая зафиксирована от выпадания гайкой 26, закрепленной с внутренней стороны конуса Морзе. Для снижения усилия перемещения центрирующих элементов по направляющим граням корпуса между направляющими гранями центрирующих элементов и направляющими гранями корпуса, а также между взаимодействующими гранями центрирующих элементов размещены соответственно сепараторы 27 и 28, преобразующие трение скольжения в трение качения. Для использования патрона на стандартных установочных местах внутренняя труба 13 имеет сочленение 29, а торец тангенсально расположенного винта 10 выполнен в виде четырехгранника 30 под стандартный четырехгранный ключ.

Устройство работает следующим образом.

Перед зажимом детали кулачки 7 разведены. Пружина 24 распирает втулки 22 и 25. Ход втулки 22 ограничен выступом с внутренней стороны конуса Морзе, в который упирается упор 23 втулки 22. Ход втулки 25 ограничен гайкой 26. Внутренняя труба 13 находится в «подвешенном» состоянии, переместиться в сторону муфты 20 она самостоятельно не может, так как не позволяет упор 31 втулки 25, и переместиться по оси в сторону корпуса патрона не дает гайка 21, упирающаяся в муфту 22.

Для зажима детали необходимо придать вращательное движение по часовой стрелке относительно корпуса 1 патрона внутренней трубе 13 (или корпусу патрона против часовой стрелки относительно внутренней трубы) с помощью элемента привода станка 19 через муфту 20. Винт 12, вращаясь вместе с трубой 13, начинает вращать червячное колесо 11 и вместе с ним винт 10. Поскольку винт 10 зафиксирован в корпусе 1, то при его вращении начинает перемещаться по резьбе 9 гайка 8, которая в свою очередь перемещает один центрирующий элемент 3 с закрепленным на нем зажимным кулачком 7 по направляющей грани 2. Своей контактирующей гранью 5 этот центрирующий элемент 3 давит на контактирующую грань 6 следующего центрирующего элемента 3, контактирующая грань 5 которого в свою очередь давит на контактирующую грань 6 следующего центрирующего элемента 3. Происходит равномерное перемещение всех центрирующих элементов и закрепленных на них зажимных кулачков 7 по радиусу к центру патрона. При соприкосновении зажимных кулачков 7 с деталью центрирующие элементы 3 и гайка 8 перестают перемещаться, винт 10 перестает вращаться. Винт 12, входящий в зацепление с червячным колесом 11, начинает вкручиваться, перемещая внутреннюю трубу 13 вдоль оси патрона в сторону корпуса. При этом обойма 18 перемещается вместе с внутренней трубой, сжимая тарельчатые пружины 17. Гайка 21, закрепленная на трубе 13, начинает давить на втулку 22, которая в свою очередь сжимает пружину 24. Усилие зажима детали определяется усилием сжатия пакета тарельчатых пружин 17 и пружины 24. При определенном перемещении трубы 13 в продольном направлении муфта 20 выводит из зацепления трубу 13 и элемент привода станка 19, при этом скорость вращения корпуса патрона и внутренней трубы одинаковая. Чтобы освободить деталь, необходимо трубе 13 прижать вращение против часовой стрелки относительно корпуса патрона.

Читайте так же:  Приказ минюста 180 от

Для использования патрона в качестве оправки необходимо внутренней трубе 13 с помощью элемента привода станка 19 через муфту 20 придать вращение против часовой стрелки. Когда кулачки 7 достигнут детали, винт 12 начнет выкручивать трубу 13, которая начинает перемещаться в сторону муфты 20. Выступом 32 труба 13 давит на упор 31 втулки 25, которая в свою очередь сжимает пружину 24. При определенном перемещении трубы 13 в продольном направлении муфта 20 выводит из зацепления трубу 13 и элемент привода станка 19, при этом скорость вращения корпуса патрона и внутренней трубы одинаковая.

При использовании патрона в качестве универсального на стандартных посадочных местах станков внутренняя труба 13 не выступает за пределы конуса Морзе, при этом с помощью стандартного четырехгранного ключа можно зажимать детали в ручном режиме.

Сепараторы 27 и 28 снижают усилие на привод при перемещении центрирующих элементов.

Приведенные особенности выполнения трехкулачкового самоцентрирующего патрона по изобретению, а также проведенные испытания показали надежность и преимущества предложенного патрона.

ФОРМУЛА ИЗОБРЕТЕНИЯ

1. Трехкулачковый самоцентрирующий патрон, содержащий конус Морзе с внутренней поверхностью, корпус с углублением, образованным расположенными под углом 60 o тремя боковыми направляющими гранями, между которыми с возможностью взаимного перемещения расположены три центрирующих элемента с закрепленными на них зажимными кулачками, каждый из центрирующих элементов имеет направляющую грань, взаимодействующую с боковой направляющей гранью углубления корпуса, и грани, расположенные под углом 30 o к направляющей грани и контактирующие с соседними центрирующими элементами, один из которых связан с гайкой, расположенной на оси винта, размещенного в тангенциально расположенном отверстии корпуса, внутри конуса Морзе по центральной оси патрона проходит труба, выполненная с возможностью прохождения внутри шпинделя, и на одном ее конце установлена подпружиненная муфта, а на втором выполнена винтовая резьба, входящая в зацепление с червячным колесом, закрепленным на винте, отличающийся тем, что он содержит две гайки и две подпружиненные относительно друг друга втулки с упорами, на внутренней поверхности конуса Морзе и на трубе выполнены выступы, одна из гаек закреплена на трубе, вторая на внутренней поверхности конуса Морзе, а втулки установлены в контакте с гайками, при этом втулка, контактирующая с гайкой, закрепленной на внутренней трубе, уперта в выступ на внутренней поверхности конуса Морзе, а втулка, контактирующая с гайкой, закрепленной на внутренней поверхности конуса Морзе, уперта в выступ на внутренней трубе.

2. Патрон по п.1, отличающийся тем, что между направляющими гранями центрирующих элементов и боковыми направляющими гранями корпуса размещены улучшающие скольжение материалы или элементы.

3. Патрон по п.1, отличающийся тем, что между взаимодействующими гранями центрирующих элементов размещены улучшающие скольжение материалы или элементы.

4. Патрон по п.1, отличающийся тем, что труба состоит из двух сопрягаемых частей.

5. Патрон по п.1, отличающийся тем, что внешний торец винта выполнен в виде четырехгранника под стандартный четырехгранный ключ.

Кулачковые токарные патроны

Кулачковые патроны предназначены для зажима заготовок цилиндрической, прямоугольной и фасонных форм. Закрепляются на шпинделе с помощью фланцев или напрямую.

По количеству кулачков бывают:

  • двухкулачковыми;
  • трехкулачковыми;
  • четырехкулачковыми.

Устанавливаются на различные типы токарных станков: токарно-винторезные, револьверные, карусельные и т.п., а также делительные головки и другие приспособления.

Двухкулачковые патроны

2-х кулачковые токарные патроны применяются для крепления сложных несимметричных и фасонных заготовок (нецилиндрических), т.е. в таких случаях, когда установка в трехкулачковом требует много больше времени или вообще не возможна. Самоцентрирующиеся 2-х кулачковые приспособления способны закреплять в сменных губках необработанные поверхности.

Корпус изготавливается из стали 45, чугуна, кулачки из цементируемых сталей, например, 20Х, ходовой винт – легированной стали. Подвижные части — термообрабатываются.

Двухкулачковые патроны производятся двух типов:

  • ручные – зажим детали осуществляется поворотом спец. ключа, вставляемого в гнездо, в результате чего, кулачки смещаются и центрируют деталь относительно оси шпинделя;
  • механизированный – с пневматическим приводом – агрегат имеет пневмоцилиндр с поршнем, который перемещает ползуны, осуществляющих разжим и зажим заготовок.

Диаметры изготавливаемых приспособлений стандартизированы: 150, 200, 250, 300, 375 мм. 2-х кулачковые токарные агрегаты с пневмоприводом изготавливают диаметрами 160, 250, 320, 400 мм с ходом кулачков 5 – 10 мм.

Основным недостатком является смещение центра заготовки из-за перекоса кулачков в направляющих по причине зазора. Поэтому крайне важно минимизировать зазор между кулачками и направляющими.

Трехкулачковые патроны

Самыми распространенными патронами являются трехкулачковые. Они устанавливаются на все токарное оборудование: в домашних мастерских, гаражах, ремонтных цехах, мелко- и крупносерийных производствах.

Самыми часто встречающимися являются 3 типа самоцентрирующихся патронов:

  • спиральные:
  • реечные;
  • эксцентриковые с червячной передачей.

Трухкулачковые патроны оснащаются тяговым (зажимные элементы связаны с гидро- или пневмоприводом) или встроенным приводом. На зажим заготовки во время работы тратится до тридцати процентов вспомогательного времени, поэтому приспособления механизируют и сокращают время на установку изделия. Самое широкое распространение в крупносерийном и массовом производствах получили механизированные кулачковые патроны с пневмоприводом. Гидропривод используют редко и применяют в ситуациях, когда необходимо сохранить малые габариты конструкции. Основное преимущество механизированных агрегатов – быстродействие и постоянное зажимное усилие на кулачках.

Подробное видео по зажимным токарным агрегатам

Спиральные патроны

3-х кулачковые спиральные патроны уже существуют более 100 лет и благодаря простой конструкции и надежности до сих пор ими оснащают новое оборудование. Обеспечивают большой диапазон хода кулачков и обладают высоким КПД, имеется возможность осуществлять зажим эксцентриковых и некруглых заготовок. Недостатками являются быстрая потеря точности и ускоренный износ. Потеря начальной точности происходит в следствии технологических особенностей: улитка только улучшается и имеет невысокую твердость, следовательно, быстро истирается – происходит быстрый износ центрирующего механизма. Ускоренный износ происходит из-за попадания стружки и грязи в клиновидные зазоры между зубьями кулачков.

Используются в единичном и мелкосерийном производстве. Оснащаются прямыми и обратными кулачками.

Реечные патроны

3-х кулачковые реечные патроны свое название получили из-за принципа работы: зубчатый венец перемещает рейки, которые одновременно перемещает кулачки. Более долговечны чем спиральные, т.к. имеется возможность закалки и шлифовки зубцов. Корпус изготавливается из литой или кованой стали, остальные движущиеся части – легированной, с последующей закалкой. Являются универсальными и применяются в единичном или мелкосерийном производствах.

  • более сильный зажим;
  • большая точность;
  • КПД ниже, чем у спиральных;
  • возможность зажима только из одного положения;
  • сложная конструкция.

Эксцентриковые патроны

3-х кулачковые эксцентриковые патроны применяются в крупносерийном производстве. Все детали агрегата изготавливаются из износостойких сталей, а затем проходят закалку и шлифовку. Обладают высокой точностью и силой зажима. Переналаживаются на зажим другой детали сравнительно просто – перестановкой насадных кулачков.

Четырехкулачковые патроны

4-х кулачковые патроны применяются для зажима заготовок некруглой и несимметричной формы. Кулачки четырехкулачкового патрона регулируются независимо и для обработки поверхности детали необходимо установить таким образом, чтобы ее ось совпала с осью шпинделя. Самоцентрирующие встречаются не часто. Приспособления являются универсальными и применяются в единичном и мелкосерийном производстве в ремонтных и инструментальных цехах.

Каждый кулачок перемещается в радиальном направлении отдельно за счет вращения винтов.

Чтобы определить возможность обработки в 4-х кулачковом патроне необходимо рассчитать отношение длины заготовки и ее диаметра. Если полученный результат будет более 4 единиц, то возможность обработки отсутствует.

На токарных станках крепятся через промежуточный фланец или непосредственно на фланцевых концах шпинделя.

ГОСТы на кулачковые патроны

Скачать ГОСТ 14903-69 «Патроны самоцентрирующие двухкулачковые»

Скачать ГОСТ 24351-80 «Патроны самоцентрирующие трех- и двухкулачковые клиновые и рычажно-клиновые»

Скачать ГОСТ 2675-80 «Патроны самоцентрирующие трехкулачковые»

Скачать ГОСТ 3890-82 «Патроны четырехкулачковые с независимым перемещением кулачков»